

Testbase Fracti	ons	Name: Class: Date:	
Time:	71 minutes		
Marks:	70 marks		
Comments:			

1	7
	7 of 64 =

$$1\frac{1}{4} \times 4 =$$

1 mark

$$\frac{3}{5} = \frac{18}{?}$$

1 mark

$$\frac{1}{7}$$
 of 602 =

1 mark

$$\frac{1}{6} \times \frac{1}{2} =$$

$$\frac{1}{8} + \frac{3}{4} =$$

1 mark

$$\frac{4}{5} = \frac{?}{100}$$

1 mark

$$\frac{5}{6}$$
 of 72 =

1 mark

$$\frac{10}{\frac{1}{4}} \times \frac{1}{2} =$$

11	21.12
	3 7 + 1 9 =

$$\frac{12}{\frac{5}{6}} = \frac{20}{?}$$

13
$$1\frac{1}{3} \times 2 =$$

$$\frac{4}{5}$$
 of 450 =

$$\frac{15}{5} \times \frac{1}{3} =$$

$$\frac{4}{5} \div 2 =$$

1 mark

$$\frac{4}{5} - \frac{7}{10} =$$

1 mark

$$\frac{19}{9}$$
 of 549 =

1 mark

$$\frac{20}{\frac{2}{5}} = \frac{12}{?}$$

21

$$\frac{2}{5}$$
 × 20 =

1 mark

22

On Saturday Lara read $\frac{2}{5}$ of her book.

On Sunday she read the **other** 90 pages to finish the book.

How many pages are there in Lara's book?

2 marks

23

Here are four fraction cards.

<u>3</u>

<u>5</u> 8 6 12

 $\frac{7}{16}$

Use any **three** of the cards to make this correct.

Here are the ingredients for chocolate ice cream.

cream	400 ml	
milk	500 ml	
egg yolks	4	
chocolate	120 g	
sugar	100 g	

Stefan has only 300 ml of cream to make chocolate ice cream.

How much **chocolate** should he use?

Write the missing fraction.

$$\frac{1}{3} + \frac{1}{4} + \boxed{}$$

1 mark

26

Write in the missing numbers.

One is done for you.

$$=\frac{457}{1000}$$

$$=\frac{23}{1000}$$

2	7
_	•

Write these numbers in order, starting with the smallest.

1 mark

28

This is Kirsty's recipe for breakfast cereal.

50 grams of oats

- 30 grams of raisins
- 40 grams of nuts

If she uses 125 grams of oats, how many grams of raisins does she need?

2 marks

29

The numbers in this sequence increase by equal amounts each time.

Write in the three missing numbers.

1

7

30

In this diagram, the number in each box is the **sum** of the two numbers below it.

Write the missing numbers.

2 marks

31

Amy did a survey of what time people get up on a Sunday morning. This table shows her results for 150 people.

Time	number of people
before 7am	13
7:00 am to 7:59 am	28
8:00 am to 8:59 am	59
9:00 am to 9:59 am	36
10 am and after	14

Look at the table.

How many people get up at 8am or later?

'Two-thirds of the 150 people in the survey get up before 9am.'

Amy is correct.

Explain how you know.

1 mark

Write these in order of size, starting with the smallest.

2 3	0.5	3 5	0.65	
			$\neg \vdash$]
smallest				

1 mark

Write these in order of size, starting with the smallest.

ON THE

33

0.34

0.7

43%

In a class, 18 of the children are girls.

A quarter of the children in the class are boys.

Altogether, how many children are there in the class?

2 marks

35

Circle the fraction that is greater than $\frac{1}{2}$ but less than $\frac{3}{4}$

4

$$\frac{7}{8}$$

$$\frac{2}{5}$$

$$\frac{1}{3}$$

$$\frac{3}{6}$$

1 mark

36

A shop sells books, CDs and DVDs.

This pie chart shows the sales of each in one week.

Estimate the **fraction** of the total sales that were DVDs.

1 mark

In this week, 200 CDs were sold.

Estimate how many books were sold.

1 mark

37

Two of the fractions below are **equivalent**.

Circle them.

$$\frac{2}{3}$$

$$\frac{16}{20}$$

1 mark

38

 $\frac{1}{3}$ of this square is shaded.

The same square is used in the diagrams below.

What fraction of this diagram is shaded?

What fraction of this diagram is shaded?

1 mark

39 Ben thinks of a number.

He adds half of the number to a quarter of the number.

The result is 60

What was the number Ben first thought of?

2 marks

40

Part of this number line is shaded.

Circle all the numbers below that belong in the shaded part of the number line.

1.1

1.4

 $1\frac{1}{3}$

 $1\frac{1}{5}$

1 mark

41

The diagram shows three regular octagons joined together.

There is a dot at the centre of each octagon.

What fraction of the diagram is shaded?

This pie chart shows their results.

Estimate the **fraction** of trees in the survey that are **oak** trees.

The children counted 60 ash trees.

Use the pie chart to estimate the **number** of **beech** trees they counted.

4.	
160	

1 mark

43

This pie chart shows how the children in Class 6 best like their potatoes cooked.

32 children took part in the survey.

Look at the four statements below.

For each statement put a tick (\checkmark) if it is **correct**. Put a cross (\divideontimes) if it is **not correct**.

10 children like chips best.	
25% of the children like mashed potatoes best.	
$\frac{1}{5}$ of the children like roast potatoes best.	
12 children like jacket potatoes best.	

44

Write these fractions in order of size starting with the smallest.

$$\frac{3}{4}$$

$$\frac{17}{20}$$

1 mark

45

Here is a rectangle with 13 identical shaded squares inside it.

What fraction of the rectangle is shaded?

1 mark

46

Three-quarters of a number is 48

What is the number?

1 mark

47

Calculate $\frac{3}{8}$ of **980**

è	
	48

This diagram shows four regular hexagons.

Shade in one third of the diagram.

1 mark

Calculate $\frac{1}{5}$ of 325

1 mark

50

Which is larger, $\frac{1}{3}$ or $\frac{2}{5}$?

Explain how you know.

There are 24 coloured cubes in a box.

Three-quarters of the cubes are red, four of the cubes are blue and the rest are green.

How many **green** cubes are in the box?

2 marks

One more **blue** cube is put into the box.

What fraction of the cubes in the box are blue now?

5	2
v	_

Complete these fractions to make each equivalent to $\frac{3}{5}$

12

1 mark

53

Here is a recipe for raspberry ice cream.

 $\frac{1}{2}$ litre of cream

1kg rasberries

250g sugar

This recipe is for **8 people**.

Josie makes enough raspberry ice cream for 12 people.

How much cream does she use?

Fred makes raspberry ice cream in the same way.

He uses $2\frac{1}{2}$ kg of raspberries.

How much **sugar** does he use?

Mark schemes

1 56 [1]

2 5 [1]

3 30 [1]

4 86 [1]

 $\begin{array}{c|c} \mathbf{5} & \mathbf{1} \\ \hline 12 & & & \\ \end{array}$

6 20 [1]

 $\frac{7}{8}$

8 80 [1]

9 60 [1]

 $\frac{1}{0}$

 $4\frac{5}{9}$ [1]

12 24 [1]

13 $2\frac{2}{3}$ [1]

14 360 [1]

[1]

[1]

16 25

[1]

17 <u>2</u> 5

[1]

18 <u>1</u>

[1]

19 61

[1]

20 30

[1]

21 8

[1]

Award **TWO** marks for the correct answer of 150 pages.

If the answer is incorrect, award **ONE** mark for evidence of an appropriate method, e.g:

•
$$\frac{3}{5} = 90$$

$$9 \div 3 = 30$$

$$30 \times 5$$

OR

•

30 × 5

Answer need not be obtained for the award of **ONE** mark.

Up to 2

Award **ONE** mark for any of the following:

$$\frac{7}{16} < \frac{6}{12} < \frac{5}{8}$$

OR

$$\frac{7}{16} < \frac{6}{12} < \frac{3}{4}$$

OR

$$\frac{7}{16} < \frac{5}{8} < \frac{3}{4}$$

OR

$$\frac{6}{12} < \frac{5}{8} < \frac{3}{4}$$

Accept equivalent fractions correctly ordered, e.g.

$$\frac{21}{48} < \frac{24}{48} < \frac{30}{48}$$

$$\frac{21}{48} < \frac{24}{48} < \frac{36}{48}$$

$$\frac{7}{16} < \frac{10}{16} < \frac{12}{16}$$

$$\frac{12}{24} < \frac{15}{24} < \frac{18}{24}$$

[1]

Award **TWO** marks for the correct answer of 90g.

If the answer is incorrect, award **ONE** mark for evidence of an appropriate method, e.g:

•
$$300 \div 400 = \frac{3}{4}$$

$$\frac{3}{4}$$
×120

Answer need not be obtained for the award of **ONE** mark.

Up to 2

[2]

25 ₅

[1]

26

All three correct

1000

0.457

0.023

or

Any 2 correct

[2]

2

1

27

$$\frac{7}{6}$$
 $\frac{5}{4}$ $\frac{4}{3}$ $\frac{17}{12}$

Accept equivalent, e.g. $\frac{14}{12}$ $\frac{15}{12}$ $\frac{16}{12}$ $\frac{17}{12}$

[1]

28

Award TWO marks for the correct answer of 75.

If the answer is incorrect, award **ONE** mark for evidence of appropriate working, eg:

■ 125 ÷ 50 = 2.5

 $2.5 \times 30 = \text{wrong answer}$

OR

■ 50g oats 30g raisins

25g oats 15g raisins $(\div 2)$

125g oats wrong answer (x 5)

Working must be carried through to reach an answer for the award of **ONE** mark.

Up to 2

Award **TWO** marks for the sequence completed correctly as shown:

1

 $2\frac{1}{2}$

4

 $5\frac{1}{2}$

7

If the answer is incorrect, award **ONE** mark for two numbers correct.

Up to 2

[2]

30

(a) $6\frac{1}{4}$

Accept equivalent fractions.

Do not accept $5\frac{5}{4}$

1

(b) $1\frac{1}{2}$

Accept equivalent fractions, eg

$$1\frac{2}{4}$$
, $\frac{3}{2}$, 1.5, 150%

[2]

31

(a) 109

1

1

- (b) An explanation that recognises that 100 people get up before 9am which is two-thirds of the total (150).
 - \blacksquare '13 + 28 + 59 = 100 which is two-thirds of the total'
 - ' $\frac{1}{3}$ of 150 = 50 and 2 × 50 = 100'
 - $\frac{2}{3}$ of 150 is 100'
 - '36 + 14 = 50 which is one-third after 9am'

Do not accept vague or incomplete explanations, eg:

- 'One-third are 9 o'clock or later'
- '100 got up at 9am'
- 'Twice as many got up before 9am.'
- \bullet '13 + 28 + 59 = 100'

U1

32

Numbers in order, as shown:

$$0.5 \quad \frac{3}{5} \quad 0.65 \quad \frac{2}{3}$$

Accept equivalent decimals, percentages or fractions.

[1]

33

Numbers in order as shown:

$$0.34$$
 0.7 $\frac{3}{4}$

Accept use of equivalent fractions, decimals or percentages, eg 0.34, 0.43, 0.7, 0.75

[1]

34

Award TWO marks for the correct answer of 24

If the answer is incorrect, award **ONE** mark for evidence of appropriate working, eg:

• $18 \div 3 \times 4 = \text{wrong answer}$

OR

•
$$18 \div 3 = 6$$

$$6 + 18 = wrong answer$$

Working must be carried through to reach an answer for the award of **ONE** mark.

OR

a 'trial and improvement' method, eg

18 girls + 14 boys = 32
$$32 \div 4 = 8$$

18 girls + 10 boys = 28 $28 \div 4 = 7$
18 girls + 4 boys = 22 $22 \div 4 = 8$

A 'trial and improvement' method must show evidence of improvement, but a final answer need not be reached for the award of **ONE** mark.

Up to 2 U1

1.50

Fraction circled as shown:

 $\frac{2}{5}$

- 7 8
- .
- 1 3
 - $\left(\frac{5}{8}\right)$

 $\frac{3}{6}$

Accept alternative unambiguous indications, eg fraction ticked, crossed or underlined.

[1]

36

(a) Answer in the range $\frac{13}{100}$ to $\frac{1}{5}$ inclusive

Range includes $\frac{1}{6}$ and $\frac{1}{7}$ Accept decimals or percentages. (0.13 to 0.2 inclusive) (13% to 20 % inclusive)

1

1

(b) Answer in the range 500 to 800 inclusive

[2]

37

Two fractions circled as shown:

- $\frac{6}{10}$
- 9 12
- $\frac{10}{15}$ $\frac{6}{20}$

Do not award the mark if additional incorrect fractions are circled. Accept alternative unambiguous indications, eg fractions ticked, crossed or underlined.

[1]

38

(a) $\frac{1}{3}$

Accept equivalent fractions or decimals.

1

U1

(b) $\frac{1}{9}$

Accept equivalent fractions or decimals.

Award TWO marks for the correct answer of 80

If the answer is incorrect, award **ONE** mark for evidence of appropriate working, eg:

• $60 \div 3 \times 4 = \text{wrong answer}$

OR

•
$$40 + 20 = 60$$

• $40 \times 2 = \text{wrong answer}$

Working must be carried through to reach an answer for the award of **ONE** mark.

OR

· a 'trial and improvement' method, eg

$$(\frac{1}{2} \times 60) + (\frac{1}{4} \times 60) = 45$$

$$(\frac{1}{2} \times 120) + (\frac{1}{4} \times 120) = 90$$

$$(\frac{1}{2} \times 100) + (\frac{1}{4} \times 100) = 75$$

A 'trial and improvement' method must show evidence of improvement, but a final answer need not be reached for the award of **ONE** mark.

OR

$$\bullet \quad \frac{1}{2}x + \frac{1}{4}x = 60$$

$$\frac{\frac{3}{4}x = 60}{x = \text{wrong answer}}$$

Up to 2 (U1)

[2]

40

Two numbers circled as shown:

 $1.1 \quad \boxed{1.4} \quad \boxed{1\frac{1}{3}} \quad 1\frac{1}{5}$

Do not award the mark if additional incorrect numbers are circled. Accept: alternative unambiguous indications, eg numbers ticked, crossed or underlined.

[1]

41

 $\frac{1}{6}$

Accept: equivalent fractions, eg $\frac{4}{24}$

[1]

42

(a) Answer in the range $\frac{1}{10}$ to $\frac{3}{20}$ inclusive.

Range includes $\frac{1}{7}$, $\frac{1}{8}$, $\frac{1}{9}$ and $\frac{1}{10}$ Accept decimals (0.1 to 0.15 inclusive) or percentages (10% -15% inclusive).

1

1

(b) Answer in the range 40 to 50 inclusive.

[2]

43

Award TWO marks for boxes ticked and crossed as shown:

If the answer is incorrect, award **ONE** mark for any three boxes correctly completed.

Accept alternative unambiguous indications such as **Y** or **N**. For **TWO** marks, accept:

Up to 2

Fractions must be written in the correct order for the award of the mark.

Accept equivalent fractions or decimals.

[1]

45 <u>13</u>

U1

46 64

[1]

[1]

47 367.5 **OR** 367½

[1]

Equivalent of one third of each hexagon shaded, or a total of $1\frac{1}{3}$ hexagons shaded, eg

Accept part shapes shaded as long as the intention is clear. Accept inaccuracies in shading provided the intention is clear.

[1]

49 65

[1]

50 An appropriate explanation which recognises that:

$$\frac{1}{3} = \frac{5}{15}$$
 and $\frac{2}{5} = \frac{6}{15}$

No mark is awarded for writing $\frac{2}{5}$ alone.

OR

$$\frac{1}{3} = \frac{2}{6}$$
 which is less than $\frac{2}{5}$

Do not accept vague or arbitrary explanations, eg

- 'Because $\frac{2}{5}$ is bigger than $\frac{1}{3}$;
- 'Because $\frac{I}{\beta}$ comes first on a number line'.

that $\frac{1}{3}$ is less than $\frac{2}{5}$ because 3 $\times \frac{2}{5}$ is greater than 1

[1]

51

(a) Award **TWO** marks for the correct answer of 2

If the answer is incorrect, award ONE mark for evidence of appropriate method, eg

$$\frac{3}{4}$$
 of 24 = 18

green = 24 - 18 - 4

Answer need not be obtained for the award of the mark.

Up to 2

1

(b) $\frac{1}{5}$

Accept equivalent fractions.

Do not accept '1 in 5' **OR** '1:5.

[3]

52

Fractions completed as shown below:

15

All three fractions must be correct for the award of the mark.

[1]

53

(a)
$$\frac{3}{4}$$
 – **OR** 0.75

Accept equivalent fractions.

1

(b) Award **TWO** marks for the correct answer of 625

If the answer is incorrect, award **ONE** mark for evidence of an appropriate method, eg

 2.5×250

OR

250 + 250 + 125

Accept for **ONE** mark 0.625 **OR** 6.25 **OR** 62.5 **OR** 6250 as evidence of appropriate method.

Calculation need not be performed for the award of the mark.

Up to 2

[3]